
1

G52CPP
C++ Programming

Lecture 4

Dr Jason Atkin
E-Mail: jaa@cs.nott.ac.uk

2

Previous 2 lectures

• & operator : address-of
• Addresses are stored in pointers
• Copying a pointer:

– Copy points to the same thing
– I.e. the address is copied

• * operator : de-reference the pointer
– Get/use the thing pointed at

• C-string : array of char s with a 0 at end
• int argc and char* argv []

3

What does this code do?

• The following code will compile:
char c = ‘H’;

printf (“%s \n”, &c);

• printf () wants a char* , &c is a char*

• Surely this is OK isn’t it?
– Afterall, it does compile!

• Q: What do you think the output is?

4

This lecture

• More pointers
– Array names are pointers to first element
– Pointers can be treated as arrays
– Pointer casting and printing
– Pointer arithmetic

• Functions:
– Declarations and definitions

• Passing pointers as parameters

5

Arrays and pointers

6

Reminder: arrays

Arrays can be of basic types, pointers,
objects, functions, … (as we will see later)

Arrays can be initialised or uninitialised
short sa [12];

char* pca [3];

long la[2] = { 4, 1 };

char ca [3] = { 'o','n','e' };

Array length is not stored
No bounds checking is performed

7

Array initialisation…

• Creating an initialised array:
– You can specify initial values, in {}
– E.g. 4 short s, with values 4,1,0,0

short shortarray [4] = { 4, 1 };

– E.g. 5 char s, with values ‘o’, ‘n’, ‘e’, 0, 0
char chararray [5] = { 'o','n','e' };

• If you specify an initialisation list with
insufficient elements, the remaining
elements will be zeroed

8

Array names act as pointers

• The name of an array can act as a pointer
to the first element in the array:

char ac[] = { 'c','+','+','c',

'h','a','r',' \0' };

• These are equivalent:
char* pc3 = &(ac[0]);

char* pc3 = ac;

and make pc3 point to the first element.
Note: &ac gives same value, different type

9

You can treat pointers as arrays

• Treating a pointer as an array:
char ac[] = { 'c','+','+','c',

'h','a','r',' \0' };

char* str = ac;

char c = str [4]; // c gets value ‘h’

• The type of pointer indicates the type of array
• The compiler trusts you

– It assumes that you know what you are doing
– i.e. it assumes that the pointer really has the address

of the first element of an array

• So if you are wrong, you can break things

10

Pointer and array similarities
• Array names are pointers

to the first element in the
array

char str[] = { 'H',
'e','l','l','o','!',
'\n‘, 0};

char* p = str;

p has value 1000 here
• Pointers can be treated

as arrays:
char c = p[4];

c has value ‘o’

Address Value Name

1000 ‘H’ str[0]

1001 ‘e’ str[1]

1002 ‘l’ str[2]

1003 ‘l’ str[3]

1004 ‘o’ str[4]

1005 ‘!’ str[5]

1006 ‘\n’ str[6]

1007 ‘\0’ str[7]

1008 1000 p

Arrays allocate memory to store values, pointers do not

11

Remember this example…
#include <cstdio>

int main()
{

char c1[] = "Hello";
char c2[] = { 'H', 'e', 'l', 'l', 'o', 0};
char* c3 = "Hello";

c1[0] = 'A';
c2[0] = 'B';

// c3[0] = 'C'; // Would probably segmentation fault

printf("%s %s %s\n", c1, c2, c3);
return 0;

}

• But it would compile!

12

Pointer casting and printing

13

You can cast pointers
• You can cast a pointer into a different type

char c1 = 'h';

char* pc2 = &c1;
int* pi4 = (int*)pc2;

• The address stays the same in C
– There are certain C++ cases where the address may

change – ignore these at the moment

• You are just telling the compiler to expect a
different type of data to be at the address

• Dangerous? e.g. You are telling the compiler to
act as if an int is at the location given by pc2 ,
but the type of pc2 says it is actually a char

14

You can print an address

• %pin printf means expect a (void*) pointer
as the parameter value to replace the %pwith

• E.g:
char c1 = 'h';

char* pc2 = &c1;

printf("%p ", (void*)pc2);

printf("%p \n", (void*) &c1);

• Output is in hexadecimal
• Example output:

0012FF73 0012FF73

15

Functions

16

Functions in C

• Functions in C are global, not class members
• You structure your code using files not classes

int myfunction(int i, char* str)
{

return i+1;
}

Return type Function
name

Type of first
parameter

Name of first
parameter

Type of second
parameter

Name of second
parameter

Return statement
If the return type is not void
you MUST return a value

17

Identifying functions in C

• In C a function is identified by its name
– The name must be unique

• In C++ (and Java) the types of parameters
are also considered (function overloading)

• This example is NOT valid in C89/C90
but is valid in C++, or Java

int multiply(int a, int b)

{ return a*b; }

long multiply(long a, long b)

{ return a*b; }

18

Declarations and definitions (1)

• Functions should be declared before they are
called (so compiler can warn about errors)

• Definitions are also declarations
• One trick is to define functions in reverse order

int myfunc2()

{ return 1; }

int myfunc1()

{ return myfunc2(); }

int main(int argc, char* argv[])

{ return myfunc1(); }

order_functions.cpp

19

Declarations and definitions (2)

• Otherwise, declare functions before usage
– Called function prototyping

• e.g.:
int myfunc1(int);

int myfunc2(int);

int main(int argc, char* argv[])

{ return myfunc1(argc); }

int myfunc1(int i1)

{ return myfunc2(i1) + 1; }

int myfunc2(int i2)

{ return 1 + i2; }

Note: No param
name is needed,
but the type must

be specified

prototype.cpp

20

Function declarations
• You must declare functions before use

– But definitions are also declarations

• Declarations usually go in header files
– cstdio has many standard i/o function declarations
– cstring has many string function declarations

– You will usually have one header file per .c or .cpp file
• Containing declarations of everything in the file that should be

available from outside the file (i.e. functions & variables in C,
also classes in C++)

• Function declarations specify only:
– Function name
– Return type
– Type(s) of parameter(s)

21

Passing pointers as
parameters

22

Parameters can be pointers

int myfunction(int i, char* str)
{

str[1] = ‘h’;
return i+1;

}

First parameter
is an int

Second parameter
is a pointer

• Each parameter has a single type, so may be
one ‘thing’

• A copy of the ‘thing’ is stored in the memory for
the parameter
– i.e. the function gets its own copy!
– Of a variable (incl pointer), literal value, etc

23

Parameters can be pointers

int myfunction(int i, char* str)
{

str[1] = ‘h’;
return i+1;

}

First parameter
is an int

Second parameter
is a pointer

• If you want to alter something that is external to a
function from within a function, you need to refer
to the thing itself, not a copy of it:
– Easy way is to pass a pointer to it
– A copy of a pointer will point to the same thing

• i.e. It will copy the address rather than the thing pointed at
• Thus you can change the thing at that address

You can alter
the char or string
that it points at

24

Example: pointer parameter
void AlterCopy(int icopy)
{

icopy = 2;
}
void AlterValue(int* picopy)
{

*picopy = 3;
}
int main(int argc, char* argv[])
{

int i = 1;
printf(“Initial value of i is %d\n”, i);
AlterCopy(i);
printf(“After AlterCopy, value of i is %d\n”, i);
AlterValue(&i);
printf(“After AlterValue, value of i is %d\n”, i);
return 0;

}

pass_by_ref.cpp

25

Java makes the decision for you
• Java object references act like pointers

– They reference (point to) the same object, rather than a copy

• Consider the following Java code:
public static int main()

{

int i = 42;

MyClass ob = new MyClass();

myFunc(ob, i);

}

static void myFunc(MyClass ob, int i)

{

i = 23; // Does not affect the i in main.

ob.set…(…); // References the same ob as in main

}

• Here a reference to the object is passed, not the object itself

26

Summary of parameter passing

• To allow a function to alter a variable, pass its address
– i.e. a pointer to it
– The value of the pointer / address is copied
– Note: Can also use references (C++ only, later lecture)

• To just provide data, you can pass the value
– But passing the address may sometimes be quicker, less data to

copy for big objects

• e.g. When you pass a ‘char* ’ to a function, the function
can alter the contents of the string pointed at
– Through the pointer

• strcpy() uses this to copy a string

27

Pointer arithmetic

28

Pointer arithmetic, by example

• E.g.: char ac[] = { 'c','+','+','c',
'h','a','r',' \0' };

char* pc = ac;

printf(“%c \n”, *pc);

• Q1: What is the output of the printf?

29

Pointer arithmetic, by example

• E.g.: char ac[] = { 'c','+','+','c',
'h','a','r',' \0' };

char* pc = ac;

printf(“%c \n”, *pc);

• We can increment pc:
pc++;

• Q2: What do you think pc++ does?

30

Pointer arithmetic, by example

• E.g.: char ac[] = { 'c','+','+','c',
'h','a','r',' \0' };

char* pc = ac;

printf(“%c \n”, *pc);

• We can increment pc:
pc++;

• Q3: What do you think this outputs?
printf(“%c \n”, *pc);

31

Similarly, with short s

• E.g.: short as[] = { 1, 7, 9, 4 };

short* ps = as;

printf(“%d \n”, *ps);

• Q1: What is the output of the printf?

32

Similarly, with short s

• E.g.: short as[] = { 1, 7, 9, 4 };

short* ps = as;

printf(“%d \n”, *ps);

• We can increment ps :
ps++;

• Q2: What do you think ps++ does?

33

Similarly, with short s

• E.g.: short as[] = { 1, 7, 9, 4 };

short* ps = as;

printf(“%d \n”, *ps);

• We can increment ps:
ps++;

• Q3: What do you think this outputs?
printf(“%d \n”, *ps);

34

Pointer increment
• Incrementing a pointer

increases the value of the
address stored by an
amount equal to the size
of the thing the pointer
thinks that it points at

• i.e. the type of the
pointer matters

• This allows moving
through an array using a
pointer

Address Value Name

1000 ‘H’ str[0]

1001 ‘e’ str[1]

1002 ‘l’ str[2]

1003 ‘l’ str[3]

1004 ‘o’ str[4]

1005 ‘!’ str[5]

1006 ‘\n’ str[6]

1007 ‘\0’ str[7]

1008 1000 p

char str[] = {…}
char* p = str;
p++; // p==1001
char c = *p; //’e’

35

Pointer decrement

• Decrementing a pointer
decreases the value of
the address stored by an
amount equal to the size
of the thing the pointer
thinks that it points at

• Be very careful about
array bounds!

Address Value Name

998 ? ?

1000 234 as[0]

1002 839 as[1]

1004 1 as[2]

1006 743 as[3]

1008 938 as[4]

1010 2342 as[5]

1012 0 as[6]

1014 3425 as[7]

1016 1000 p

short as[8] = {…};
short* p = as;
p-- ; // p==998
short s = *p; //??

36

Pointer Arithmetic Summary

• Pointers store addresses
– You can increment/decrement them (++,--)

• Changing the address that is stored
– You can also add to or subtract from the value

of a pointer
– They move in multiples of the size of the

type that they THINK they point at
– e.g.: If a short is 2 bytes, then incrementing

a short* pointer will add 2 to the address

– This is very useful for moving through arrays

37

Finally: subtracting pointers
• If you subtract one

pointer from another (of
the same type) then the
result is the count of the
number of elements
between them +1

• Or the number of bytes,
divided by the size of an
element

Address Value Name

998 ? ?

1000 234 as[0]

1002 839 as[1]

1004 1 as[2]

1006 743 as[3]

1008 938 as[4]

1010 2342 as[5]

1012 0 as[6]

1014 3425 as[7]

1016 1006 p1

1020 1010 p2

short as[8] = {
234,839,1,743,938,
2342,0,3425 };

short* p1 = &(as[3]);
short* p2 = &(as[5]);
int i = p2 – p1;

38

Determining string length

39

Example: strlen()
• int strlen(char* str)

– Get string length, in chars
– Check each character in turn

until a ‘\0’ (or 0) is found,
then return the length

– Length excludes the ‘\0’

Address Name Value

1000 str[0] ‘C’

1001 str[1] ‘ ’

1002 str[2] ‘s’

1003 str[3] ‘t ‘

1004 str[4] ‘r’

1005 str[5] ‘i’

1006 str[6] ‘n’

1007 str[7] ‘g’

1008 str[8] ‘\0’, 0

int mystrlen(char* str)
{

int i = 0;
while (str[i])

i++;
return i;

}

Remember from lecture 2, integers can be used in conditions
Value 0 means false, non-zero means true.

40

Example 2: strlen() revisited
• int strlen(char* str)

– Get string length, in chars
– Check each character in turn

until a ‘\0’ (or 0) is found,
then return the length

– Length excludes the ‘\0’

Address Value Name

1000 ‘C’ str[0]

1001 ‘ ’ str[1]

1002 ‘s’ str[2]

1003 ‘t ‘ str[3]

1004 ‘r’ str[4]

1005 ‘i’ str[5]

1006 ‘n’ str[6]

1007 ‘g’ str[7]

1008 ‘\0’, 0 str[8]

int mystrlen2(char* str)
{

char* temp = str;
while (*temp)

temp++;
return temp-str;

}

When you subtract a pointer from another (of the same type), the
result is the number of elements difference between them

41

Implementing strcpy

42

How we could implement strcpy
char src[] = {'C','',

's','t','r',0};

char dest[7];

strcpy(dest, src);

Address Value Name

1000 ‘C’ src[0]

1001 ‘ ’ src[1]

1002 ‘s’ src[2]

1003 ‘t ‘ src[3]

1004 ‘r’ src[4]

1005 0 src[5]

6000 ? dest[0]

6001 ? dest[1]

6002 ? dest[2]

6003 ? dest[3]

6004 ? dest[4]

6005 ? dest[5]

6006 ? dest[6]

char* mystrcpy(
char* dest, char* src)

{
char* p = dest;
char* q = src;
while (*p++ = *q++)

;
return dest;

}

Note: *p++ is equivalent to *(p++) (post-increment has higher precedence)

43

Reminder: Operator Precedence

• Operators are evaluated in a specific order
– Highest operator precedence applies first

• Examples (highest to lowest, not complete)
(), [], ++, -- Grouping, array access, post increment/decrement
++, --, *, & Pre-increment, dereference, address of (right to left)
*, /, % Multiplication, division, modulus
+ - Addition, subtraction
<, <=, >, >= Comparison
==, != Comparison: equal to, not equal to
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
? : Ternary conditional
=, +=, -= etc Assignment and ‘… and assign’ (right to left)

In
cr

ea
si

ng

pr
ec

ed
en

ce

44

Next lecture

• The Stack and Stack Frames

• The C / C++ Pre-processor

• Compiling and Linking Multiple Files

